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This paper analyses the problem of a flow past an oscillating body moving with 
constant velocity, below and parallel to a free surface. Special attention is given to 
frequencies of oscillation in the neighbourhood of the critical frequency w, = 0.25 g /U,  
where the classical linearized solution yields infinitely large wave amplitude. As a 
result both the lift and drag forces acting on the oscillating body a t  the resonant 
frequency are singular. It is demonstrated in the paper how this resonance is elimi- 
nated by considering higher-order free-surface effects, in particular the interaction 
between the first- and third-order terms. The resulting generalized solution yields 
finite wave amplitudes a t  the resonant frequency which are O ( d )  and O(clog6) for 
2 and 3 dimensions respectively. Here 6 is a measure of the singularity strength. It is 
also shown that inclusion of third-order terms causes a shift in the wavenumber and 
group velocity which eliminates the singularity in the lift and drag expressions at  the 
resonant frequency. These results are illustrated by computing the lift and drag 
experienced by a submerged oscillating horizontal doublet in a uniform flow. 

1. Introduction 
The problem considered here is that of a flow past a body (or a pressure distribution) 

that moves a t  constant speed and simultaneously performs an oscillatory motion near 
the free-surface of a heavy fluid. Since a body or a travelling pressure patch can be 
represented approximately by a suitable distribution of singularities, we will refer 
explicitly herein to the case of submerged or free-surface singularities. 

This problem has drawn some attention and has been investigated in the past 
because of its fundamental interest as well as for its applications in naval hydro- 
dynamics in general and in ship motion in particular. So far the flow problem has been 
traditionally solved by linearization, i.e. under the assumption that the oscillatory 
motion is a small perturbation of the uniform flow, and consequently with neglect of 
nonlinear terms in the free-surface boundary condition. Thus the two-dimensional 
case has been treated by, among others, Haskind (1954), Wu (1957) and Debnath & 
Rosenblat (1 969), while the three-dimensional flow has been investigated primarily 
by Eggers (1957), Hanaoka (1957), Becker (1958), Newman (1959), Tayler & Van den 
Driessche (1974) and Doctors (1978). I n  these previous studies it has been found that 
in water of infinite depth the velocity potential becomes unbounded a t  the critical 
resonant frequency w, = to; U ' j g  = 0.25, where w' is the frequency of oscillation, U' 
is the uniform translatory velocity and g is the acceleration of gravity.? In  the two- 

t A recent work dealing with the numerical solution of the same problem (Euvrard et al. 
1977) emphasizes the inability of numerical methods to cope with resonant conditions. 
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dimensional case, for frequencies smaller than w:, there exists a system of three 
distinct waves that propagate downstream from the singularity, and one wave that 
propagates upstream, whereas for w' > w; only two downstream waves are left. The 
group velocity in still water of the two waves that disappear a t  w' > w: tends to the 
translation velocity U' as w' approaches 0:: from below. The resonance phenomenon is 
thus attributed to the inability of these waves to transfer away the energy imparted by 
the oscillating body to the fluid. The picture is essentially the same in the case of 
three-dimensional flows for the transverse wave system. It has been shown in the past, 
and also in the sequel here, that the amplitude of the resonant waves is of order 
(wd - w ' )  -4 for two-dimensional flow and of order In (WE - w ' )  in the three-dimensional 
case. 

It is well known by now that the linearized solution ceases to be valid a t  near- 
resonant conditions, but nevertheless no attempt has been made so far to  remove this 
resonance by taking account of nonlinear free-surface effects. In  arecent work (Dagan & 
Miloh 1981), we have investigated the effect of a steady non-uniform flow, associated 
with the singularity, upon the resonance. One of the main findings of this work was that 
resonance is removed in the solution of the linearized equations, but with variable 
coefficients related to the non-uniform flow maintained in the free-surface equation, 
only for the case in which the steady component is due to an isolated vortex or a 
lifting line. Ahhough this case is of interest in some applications, the general problem 
which involves other types of singularities and of purely oscillatory motion was not 
solved. 

The aim of the present work is to solve this general problem of resonance removal for 
both two- and three-dimensional flows. We use a perturbation expansion in the ampli- 
tude 6' of the oscillatory singularity, and we shall show that the perturbation series 
becomes non-uniform near 0; when terms of third order in E' are retained in the 
expansion. By a proper uniformization procedure, similar to co-ordinate straining, a 
finite solution which is valid a t  wE is subsequently obtained. The free-surface third- 
order nonlinear terms cause a shift of the wavenumber of the free waves, and con- 
sequently their group velocity does not tend to 77' when w' + wE, which essentially 
explains the removal of resonance. Furthermore, we shall show that the velocity 
potential, of order E' for w' sufficiently far from w:, becomes of order e't and E' In 6' a t  
w' = wb in the two- and three-dimensional cases respectively. Finally, we shall 
illustrate the results by evaluating the forces acting on a dipole singularity at w' 
close to w;. 

The two-dimensional problem is considered in detail here since closed-form results 
can be obtained more easily for the planar case. Furthermore, the case of three- 
dimensional flows can be solved along the same lines, although some additional 
algebraic difficulties are present. The main results of the analysis of three-dimensional 
flows are briefly sketched in $9.  

2. Mathematical statement of the problem and perturbation expansion 
We consider the inviscid flow of a heavy fluid of infinite depth. Variables are made 

dimensionless with respect to U' and U'2/g as velocity and length scales, respectively, 
where U' > 0 is the constant horizontal velocity of the moving singularity. Let (x, y) 
be a Cartesian system moving with the singularity, with y vertically upwards while 
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y = 0 is the equation of the unperturbed free surface. Let @(x, y , t )  be the velocity 
potential, which is decomposed as follows: 

@(X,Y,t) = -x+$(x ,y , t ) .  (1) 

V2$ = 0, ( y  6 q) ,  (2) 

(3) 

Here $ denotes the perturbation potential, which satisfies the following exact 
equations : 

q(x , t )  = --+--- a$ ;v$h.v$, ( y =  7) 
at ax 

where y = q(x,  t )  is the equation of the free surface. Equation (4) can be obtained by 
elimination of 7 from the Bernoulli equation (3) and the kinematic free-surface 
boundary condition (see e.g. Wehausen & Laitone 1960). For the sake of convenience 
(4) is rewritten as 

where the linear, quadratic and third-order operators Lj ( j  = 1 ,  2 , 3 )  are given by 
Ll($) + '2(#) $) + ' 3 ( $ ?  $ 3  4) = O? ( 5 )  

(7) 
a a 
at ax 

L,(a,p) = m a ,  - ap - 2va .  - op, 

We now expand the disturbance potential $( 1) in a perturbation power series in E ,  

a small dimensionless parameter that characterizes the singularity strength. Thus 

4 ( x ,  Y, 4 = e$,(x, y, t )  + E 2 4 2 ( X ,  y, t )  + €3$3(X, Y ,  t )  + * * (9) 

(10) 

Substituting (9) into (2) yields 

v2$i(x, y , t )  = 0 ( y  < 0;j = 1)  2, ...), 

while (3) yields, after a Taylor expansion near y = 0, 

Wl 841 ?/,(x,t) = --+- at ax ( y  = O ) ,  

q 2 ( x , t )  = --+-+TI-- 842 at 842 ax ay a ( -- a;,+%) -gV$,.v$, ( y  = 0). (12) 

Carrying out a similar expansion of (4) gives, up to third-order terms, 

Ll(41) = 0 (Y = 0)) (13) 

(14) 
a 

Ll($Z) = - J52(#1J $1) - 711% jx#l) (Y = 01, 

aL2(41' -71----- aL1(42) L2(& $2) - L2(& $,) ( y  = 0). (15) 
aY aY 

- 71 
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The solution of the problem by the perturbation-expansion scheme involves the 
determination of harmonic functions q5j defined in the half-plane y < 0,  subject to the 
boundary conditions (1 1)-( 15) on y = 0. We now consider explicitly oscillating 
singularities by separating q51 in the following manner: 

A@, Y, t )  = 'pl(", Y, t )  + 2$l(X, Y) cos wt, (16) 

$l(X,O) = 0 (17) 

where +l(x, y) is a singular function satisfying the condition 

on the unperturbed free surface, and 'pl(x, y, t )  is regular for y 6 0.  We seek periodic 
quasi-steady solutions for q5j in the form 

W 

(18) 
where ji and ij stand for the complex conjugates of 'p and 7. 

To account for the initial conditions or equivalently for radiation conditions, we 
shall use the method suggested by Lighthill (1960); namely we multiply the right-hand 
side of (18) by exp (pt)  and seek the limit ,u -+ 0 as the solution of our problem (this is 
equivalent to using an artificial viscosity in the manner suggested by Rayleigh). With 
the notation of (18), @l (16) can be rewritten as 

(19) 2kl cos wt = ll.l, (x, y) eiWt + $l,-l(x, y) ciUt; k1 = $1,1 = ll.l, -l. 
To derive the equations satisfied by the unknown functions 'pi ,m, we substitute (18) 
and (19) into (10)-(15) to obtain for j = 1 , 2 , 3  (after collecting terms with same 
frequency) 

first -order 
v2'p,,, = 0 (y 6 0); 

= 0 (m * 1, - 1 ) ;  

a Y  

second-order 

aL1('plJ) = p2,2(x) (y = O ) ,  Ll ( ' p2 ,2 )  = -L2(91,1, 'p1,1)-%,1 

a 'pz ,2  - W2'p1,1 a'P1,l- rl,l - a ( - iw'p,,, + -) a'p1 I 

ax a Y  a Y  ax 
72,z = - 2iw'p2,2 + - 

- a'p1,-1 - a'p1 1 a291 -1 a2'p1. 1 
r 2 0  = Z"Tl,f--~Wrl,-l -+%>1-+71,-1- aY a Y  ax ay ax ay 

a'p2,o - V'p1,l. V'p1,-1+ ax 
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third - order 

-L2(y1,1, (P2,2)-L2((P2,2, ?1,1)-L3(%,1? %,1, Y1,l)  = p3,3(") (Y = O ) ,  (30) 

( ~ ~ ~ - 0  ( m +  1 , - -1 ,3 , -3 ) .  (31) 

Equations (21)-(31) exhaust the boundary conditions satisfied by ~ p ~ , ~ ,  ( P ~ , ~ ,  ( P ~ , ~ ,  ( P ~ , ~  

and ( P ~ , ~ ,  the only terms different from zero up to third order. We have assumed tacitly 
that higher-order terms than $1 do not comprise singular potentials. This is not 
necessarily the case, but, as shown in the sequel, their presence does not affect our 
conclusions regarding the resonance removal Tn anv case, such terms can be added a t  

The operators L,, L2 and L3 appearing in (21)-(31) are the same as in (6)-(S), after 
differentiating with respect to time and deleting the exponential time-dependent 
term. Thus @,/at, for example, has to be replaced by Xz=-m ( i m w i p )  in Ll (6) 
and L2 (7). 

Summarizing this section, the problem of a free-surface flow past on oscillatory 
singularity has been reduced, by employing a perturbation expansion, to the determi- 
nation of the potentials cpPi,m, which satisfy linear but inhomogeneous boundary 
conditions on y = 0. The right-hand-side terms pj,m in (24), (25), (29) and (30) are all 
functions of fewer than m terms of the potential, and may be thus considered as 
inhomogeneous source terms. 

will to the right-hand sides of (21), (24), (25! 21)-(30),. , 
, 

3. Solution by Fourier transforms 

rpPi,m, defined by 
To solve (20)-(31) we make use of Fourier transforms of the regular potentials 

Fi,m(k,Y) = ' Jm --m rp i m  ., (x, 0) eikz elkly dz, (32) 

such that the Laplace equations (20) are satisfied. Taking now the Fourier transform of 
(21), (24), (25), (29) and (30) yields 

Aj,m(k,w)+j , , (k ,O) = jjPi,m(k) (j = 1,  m = 1 ; j  = 2, m = 2 ; j  = 2, 

m = 0;j = 3, m = 1 ; j  = 3, m = 3). (34) 
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The polynomials Aj,m are given by the following expressions, based on (6) and (1  8) : 

Aj ,m(k ,  w )  = - m2w2 - 2mwk - k2 + I kl - 2 i w m p  + 2 i m k p ,  (35) 

for a n y j  and wit.h p a positive vanishingly small parameter. The set (34) gives 
for y = 0, and $j,m(x, y) can thus be obtained subsequently by inversion (33). 

the simple, but illuminating case, of a harmonic wave. 
Before embarking on the detailed analysis of the various 'pj,m we shall briefly discuss 

4. Solution for a harmonic wave 
Let us consider first the case $,, = 0 ,  or p1, ,  = 0 ,  i.e. no singularity, while the first- 

(36) 

As a matter of fact these potentials represent in a fixed frame the usual Stokes waves, 
and the remaining terms of the expansion are its well-known higher-order approxi- 
mations. It is still instructive to develop these expressions in the moving frame by 
following the present procedure. 

order potential is given by ,ce-ikze Ikl~/. 
Y 1 , l  = 

The wave profile, according to (1 1)  and ( 2 2 ) ,  is given by 

~ , , ( x , t )  = yl,leiwt+yl,-le-iwt = -2e(k+w)sin(kx-ot). (37) 

A 1 , , ( k , o )  = - ~ ~ - 2 ~ k + l k l - k ~  = 0. (38) 

ki1)7 ki2) = &[ 1 - 2~ & (1  - 40)+], (39) 

/If3), ki4) = a[ - 1 - 2~ f (1  + 4 ~ ) 8 ] ;  (40) 

kil ) ,  k i2)  = k, + SW & SW*, (41) 

with k ,  = W ,  = 8, SW = w,--w.  (42) 

Substitution of (36) into (34), withp,,,, = 0 andp = 0, yields the well-known dispersion 
relation 

The function A , , , ( k ,  w )  is depicted schematically in figure 1.  The four roots of (38) are 
given by 

and in the neighbourhood of w = w ,  = 0.25, (39) becomes 

The group velocities of the first two waves in a fixed frame are given by 

At w = w,(Sw = 0 )  the group velocity is equal to the current velocity; i.e. the wave 
energy flux with respect to the moving frame is zero. 

Substituting 'p1,, (36) with q ~ , , , - ~  = c p l , ,  into p,,,(x) (24) andp,,, ( 2 5 ) ,  and by using 
(6)-(8)7 it is immediately found that 

P,,,(X) =- PZ,-Z(X) = P Z , O ( X )  = 0, (44) 

and consequently Yz,z = 'p2,-2 = ' p 2 , o  = 0. (45) 

Furthermore, substitution of (36) and (45) into ( 2 9 )  and (30) shows that 93,3 = 0,  
and that the only surviving terms of p3, ,  are 

P3,l = -L3( 'p1 , -1 ,  T l , l >  y l , l ) -L3( 'p l , l ,  ql,-lj ~ l , l ) - L 3 ( ' p l , l ~  T l , l ,  y l , - l )  

(46) = - 463k4 e- ikz .  
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Y :4afk4 

A l , l  ( k ,  w )  for w = w, 

FIGURE 1. Graphical representation of .ie solution of (38) and (51). 

It is thus seen that the perturbation scheme breaks down at third order. Indeed, for 

y3, = a3 elklv (47) 

(48) 

(29) gives for the unknown amplitude a3 

which by (38) implies u3 + co. 
The appearance of the secular term in the third-order approximation can be attrib- 

uted to  an amplitude related wavenumber shift. Indeed, if we collect the first- and 
third-order terms in a generalized expansion of the type 

w )  a3 = - 463164, 

%,1g = 6 e--ik&)z elk&)12/, 'pi,-lg = eik,zelk,Iy, (49) 

Mcp,,,) = P3,1(4 (Y = 0). (50)  

A,,,g(k,,6J) = - 462162. (51) 

then E g  is determined by the equations 

Equations (49) and (50) yield, by using (38) and (46), the following generalized 
dispersion equation: 

The right-hand side of (51) is represented in fig. 1, and the four roots of (51) are shown 
there schematically. For sufficiently small e that satisfies the requirement 

the roots of (51) are close to those of (38) and can be computed by taking E ,  = kr) 
(j = 1 , 2 , 3 , 4 )  in the right-hand side of (51). 

In  particular, for the two roots (39) and for w close to w, we obtain 

P) Ig 9 16iz = *[ 1 - 2~ & (1 - 4~ + &@)r] 
= 16, + sw * (SW + &€2)*. (53) 

It is seen that for Sw = 0 the wavenumber of the free-waves is shifted by &/e l ,  and the 
group velocity (43) is no longer equal to the current velocity. These rather simple 
results provide the key to the resonance removal in the case of a moving singularity, 
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which is the main theme of this study. As we shall show in the following sections, the 
algebra then becomes more involved owing to the presence of the singular potential 
$1,1 in (21). The final result, however, is that the wave energy is carried away from the 
singularity and the wave amplitude remains finite for w < w,. 

The role of third-order interactions of free waves in resonant conditions has been 
investigated thoroughly in the past (see e.g. Phillips 1969, p. 135). Some results for 
steady waves generated by a ship have also been obtained by Newman (1971). 

5. The first-order solution 
We return now to the case of oscillating singularities, and present the solution of 

the first-order problem. This is a classical problem which has been solved previously 
(see 5 l), and here we reproduce the results briefly for the sake of completeness. Thus, 

The quadratic form Al, (38) can be rewritten as 

Al,,(k,w) = -(E-ki1))(lc-Ei2)) ( E  > 0 ) ,  (55) 

Al,l(k,w) = -(k-kj3))(k-ki4)) (k < 0) ,  (56)  

where the four roots Icy)  are given by (39) and (40). If the small parameter p is kept in 
the expression for Al,l ,  the locations of these roots on the inversion path in the 
complex k-plane is determined completely, as shown in figure 2(a).  The potential 
~ ] , ~ ( x ,  y) is obtained by inverting FlS1. Thus by accounting for the semi-residues a t  
kY. we have 

where it has been assumed that f51,1 (54) is regular on the real k-axis. The integral 
term in (57)  stands for a Cauchy principal value a t  the four poles of figure 2 (a). We are 
interested here only in the resonant terms of cpl,l) i.e. those that become unbounded 
as w --f w,. It is readily seen that these terms are associated with the semi-residues a t  
kf'), ki2), and for fixed (x, y) yl, , (57) can be rewritten as 

where the remaining terms of (57) are finite as Sw --f 0 and k, = 0.25. Similarly we have 

since P1,,(k) = 
velocity potential defined in (18), for w close to we, 

- lc). Hence we arrive a t  the final expression for the first-order 
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k 

k p )  

(a )  ( b )  

FIGURE 2. Location of roots of A, , , (k ,  w )  = 0 on the inversion path in 
the complex k-plane: (a) for w < 0,; ( b )  for w > w,. 

Also, by (19) and (2t),  
Pl,l(k) = - 

Similar expressions can be obtained for 1x1 -t CQ. Then, the residues a t  kil) or k12), 

Thus depending on whether x -t 03 or x --f - co, contribute to the resonant term of 'pl, 

i(27r)t 
#l(x, y, t )  = 7 exp {kjl)y} [j51, - kP)) exp { - ik,'l)x - iwt) S W  

-j51,1(k~1))exp{ik~1)x+iwt}]+0(1) ( x - f c o ,  w < u,), (62) 

and there is a similar expression, with kjl) replaced by ki2), for x -+ - co. 
In  the case w > o),, the two resonant poles kjl) and kj2) depart from the real axis 

(figure 2 b ) ,  and the polar contributions in (62) vanish. Hence ey51 is not resonant as 
long as w approaches wc from the right, i.e. w > w,, and has an infinite sharp dis- 
continuity a t  w = w,. Finally, the amplitude of the resonant term is O[e/Swb] for 
w < w,. 

6. The higher-order solutions 
The Fourier transforms of the higher-order terms qj,m are given by (34) and (35). 

Unlike Pl,l (61), the nonlinear terms pj,m(34) are expressed with the aid of convolution 
integrals, and their analysis, for arbitrary w ,  is quite tedious. In  the present work we 
are interested, however, only in the behaviour of in the neighbourhood of w = wCr, 
and more precisely in the most singular contributions to 'pi,, as Sw-t 0. These contri- 
butions can be obtained quite easily by extracting from the Fourier transforms of 
pi,, the semi-residues a t  the two poles neighbouring k,, whenever they appear on the 
integration path in the transform plane. Such an analysis, whose details are not given 
here, shows that the highest resonant contributions of the second-order terms e2'p2, 

and e2'p2,0 are of order e2/6w3 for 6w+O. Since the first-order solution eq51 has been 
shown in 9 5 to be of order ~ / 6 w 3  it is seen that the quadratic term is weaker than the 
linearized solution and is asymptotic to e#l for any w .  The analysis of the third-order 
term rp3,3 (30) reveals that its most singular contribution is of order e3/Sw8 for Sw-t 0, 
and this is found to be weaker than that of the remaining third-order term ( P ~ , ~  (as), 
which is the only one investigated in some detail in the sequel. 

Among the various terms making ~ p p ~ , ~  (29), the most resonant contributions stem 
from the first three terms on the right-hand side of (29), exactly as in the case of the 
harmonic wave (46). Denoting this part by p& we have from (29) that - - gl(k) = -E3((P1,--1) yl , l ,  ( f 1 , l )  - L 3 ( ~ 1 , 1 ~  q I , - l ,  (fl,1)- '3(Vl,l7 Fl.1) ql,-l) 
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1 
u; l ( k  - A, h - v, v) = - { (w + v) [ I  h - vI + Ik - h I] (k - v) [ ( A  - v) (k - A)  

TI 

- p- v ]  Ik -h l ]  - ( k - h - w )  [2wh2lh- v (  - 2wv]v]  (h- v) 

+ I vI (v - I vl ) ( A  - v) (Ih - vl + I vl )] - [ ( A  - v) v2 ( k  - A )  

+*(h-v)v(k-h)2-  Ih-vI IvI ( k - h ) v - ( h - v )  ( V I  Ik-Al v 

- ( h - v ) I v l  (k-h)Ik-hI+Ih-vlv2Ik-hl 

+*(h-vl  lvl (k-h)2]} .  (64) 

Furthermore, by substituting & l  (54) into (63) we obtain 

where, by (61)) 

b: , (k-h ,h-v ,  4 = a3*,1(k-h,h-y,v)91,1(Y)17,,1(h-y)171,1(JC-h). (66) 

Repeated extraction of the semi-residues of the coalescing poles on the integration 
paths in the v- and h-planes of @3*, (65) can be shown to yield the following most- 

where - k,, k,, k,) (66) is regular and generally different from zero. Finally, the 
inversion of ?&l(k,  0 )  with 173,1 replaced by @z1(k) (67) yields for the most-singular 

The far free waves associated with (p& are therefore of the type 

and similarly for x -+ - 00, with ki2)  replaced by kll). 
It is seen that ( ~ 3 * , ~  consists of two terms: one of type e- ikcx/Sw% and the other of type 

x e - k c x / S w 2 .  I f  we compare e3q4 N e3$ - e3/6w* stemming from the terms of first type 
with the corresponding resonant first-order term ~ q 5 ~  - e/6w* ( $ 5 ) )  it is found that the 
perturbation series is no longer uniform for fixed x, y, c and 6w + 0. Indeed, 

e3$b3/6(b1 e2/6w2, ( w  < w,) (70) 

implying that the perturbation series is uniform only if 6w - ( c ( ~ ,  a < 1. Hence in the 
(e,w)-plane the perturbation series is not uniform in the zone between the lines 
w = w ,  and w = w c - p l e l ,  where ~3 is finite. 

Another disturbing finding related t o  terms of the second type is that  e3&, becomes 
unbounded like ~31x1 /Sw2 for 1x1 -+ 00 and for any e and 60. This is a secular term which 
recalls the breaking down of the perturbation expansion for a harmonic wave. Since 
the third-order term becomes dominant in the zone of non-uniformity, it has to be kept 
in the first approximation, and a generalized asymptotic expansion, similar to that 
adopted for the harmonic wave ( §  4),  has to  be employed in order to obtain a uniformly 
valid solution. 
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7. Removal of resonance and derivation of uniformly valid solution 
The behaviour of the regular perturbation series suggests the existence of a phase 

shift of the wavenumber of the resonant waves, which depends on 8. Hence, as in 94 
we shall assume that qb has a uniformly valid generalized expansion 

qbh Y, t ;  4 = €41g(X,  9, t ;  e) + €2qbzg(X, y, t ;  4 + . * * 9 (71) 

with 

replacing (9) and (18) respectively. We limit our study here to deriving in detail the 
term q ~ , , ~ ~ .  Along the lines of $ 4  we assume that ql,lg(k, 0) can be written as 

On the basis of (74) and $4 it  is assumed that A l , l g  has the structure 

A z , l g ( k , W ;  E ) =  A1,,(k, w )  +dl (c ,  w ) ;  limd,(e, w )  = 0. 

A,,,(k, w )  +d, = 0 

(75) 

( 76) 

(77) 

€+O 
The generalized dispersion relation 

has in the neighbourhood of k = k ,  the two roots 

k$? = k, + 6~ + (SW + dl)a, klz = k ,  + SO - (SO + dl)*, 

so that l ) ( k  > 0). 
1 

A l , l g ( k , w ;  E ) =  

To determine d, we have to carry out the same calculations as in $ 5 ,  with 
replaced by Furthermore, we retain now the most-singular third-order term of 
(29) and the first-order one in the same equation, since the expansion is not uniform 
near w = w,. Thus the starting point is now 

Ll((fl,lg) +L3(%,-lg, (Pl,lg, (Pl,lg) +L3((P1,1g, (Pl,-lg, (Pl, lg) 

+L3('?1,1g, (P1,lg' ( f l , - lg )  = Pl,l(%), (79) 
replacing both (21) and (29). The Fourier transform of (79) yields, similarly to  (34) 
and (63L 

This nonlinear integral equation replaces (34) for j = I ,  m = 1, which could be re- 
covered by a regular €-power series expansion of (80). Equation (80) is generally 
intractable, but it can be solved easily at  leading order in 6w-1. Indeed, by substitu- 
ting +l,lg (73) in (80) we obtain 
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where b& is given by (66). Carrying out the integration in (81) exactly as in 5 6, and 
retaining the most-singular term of the type (67) yields 

It is seen that the identity (82) is satisfied a t  leading-order in 6w-1 and in a neighbour- 
hood k - k, = 0(6w*)  if 

By using (75) the unknown d, is determined uniquely in the neighbourhood of w = wc 
from the quadratic equation ensuing from (83): 

The sign in (85) has been selected so that for E = 0 and 6w > 0, Al,lg-+Al,l. The 
quantity b&/@l,l appearing in (85) is easily obtained by substituting 

G,l( - k,, kc ,  k,) = - 2G/n 

from (64) in (66) and (61), yielding 

Since @l,l(kc) = g1,,( -kc)  we find that the right-hand side of (86) is an essentially 
negative real quantity. 

Substituting (86) into (78)  yields 

--- 
I )  

1 1 - 1 

Al, le( k, w ,  E )  - - kit<g - (k - k f i g  k - k(2) 1,1g 

where 

Equations (73) and (87) give ?+51,1g(k, 0) as a uniformly valid first-order solution for any 
w < wc and E = o(1). Inversion of (73) therefore gives, for fixed x, y and for the 
resonant terms that stem from the semi-residues a t  and k:? near Ic = k,, 

while the remaining terms, i.e. the semi-residues at  k = hi3), ki4) and the principal- 
value integral of (57) can be taken precisely as in (57)) as they are uniform near 
w = w,. It is seen that for w = w,, i.e. 6w = 0, we have 
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Hence y t l g  and y?--Ig = Cp&, are finite a t  w = w,, and the dominant term of the first- 
order solution 

(91 )  €4 & = ecp T, lg eiWt + €9 T, -lg e-iwt 

is no longer resonant there. The ordering of the perturbation series is changed, 
however. Whereas in the region of uniformity of the regular perturbation series, as well 
as for the remaining terms of e41, g, the order is O(e) ,  in the region of non-uniformity it 
becomes O(e8). It should be noted that the generalized solution, although derived for k 
in the neighbourhood of k,, is valid for any k ,  and carries out a continuous transition 
between the two zones, recalling a composite matched asymptotic solution. 

By the same token, the order of the resonant term of y2,2g a t  w ,  becomes O(&) rather 
than the O(e2/Sw8) of cp2,2. Finally, the third-order terms not accounted for in (81), 
i.e. cp3,3 and part of behave under the generalized expansion like O(e*) rather than 
O(e3/6w%) near w = w,. Hence the generalized perturbation series has been rendered 
uniform by the phase shift of the resonant waves, and e41,g is asymptotic to 4 for any 
w and e = o( 1). 

8. Illustration of results: drag and lift of an oscillating doublet 
The results obtained in 9 7 are illustrated now by computing the drag and lift forces 

experienced by an x-oriented oscillatory point doublet of total output e lying a t  a 
dimensionless depth h below the undisturbed free-surface. 

The function &(k) is given in this special case by 

while by (88) and by substituting k = E ,  = 0.25, 

o2 = e27r 2-5 j51,1(k,) j51,1( - E,) = e2 2-10e-4h. (93)  

Thus the potential yl,,s is given with the aid of (87) and (89)  by the following 
expression, valid for 6w = w, - w > 0 and for fixed x, y: 

(94 )  

The last term of (94) )  standing for a principal value a t  the poles ki2, klz (77)) is regular 
for 60 --f 0. The singular first term of (94) has to be deleted for Sw < 0. 

The first-order generalized potential is therefore given by 

q51g(z,y, t ,  e )  = [26w +2(6~2+  o2)6]-4{k$exp {lkizl (y-h)] cos (k$?x-- wt)  



152 

1.2 

G .  Dagan and T. Miloh 

7- 

The coefficients of drag and lift experienced by the doublet are readily obtained by 
employing the Lagally theorem: 

Substitution of (95)) after extracting the contributions of the semi-residues a t  kl3)) 
kI4) (40)) yields for Sw > 0 

CD/m2 = [2sw + 2(6w2 + rr2)3]-3 exp { - 2 I I& I h} + kii)3 exp { - 2 I I C ; ~  I h} 0082 wt 

+ (k44) - @))-I [k (4? exp{ - ~ ~ k ~ ~ ~ ~ ~ } - k ~ ~ ~ 3 e x p { - 2 ~ ~ ~ ~ ~ ( h } ] ~ o s ~ w t  

The first terms of (98) and (99) have to  be deleted for Sw < 0.  The expressions for a2, 
ki;, ki2, ki3) and kI4) are given by (93)) (77 )  and (40) respectively, in terms of w ,  h and 6 .  

If one substitutes a = 0 in (98) and (99) the usual expressions obtained from the 
linearized solution q51 are recovered. 

It is important to note that the linearized classical solution predicts a DC com- 
ponent of the drag and an AC component of the lift singular like O(e2/6w4) as 6w + 0. 
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On the other hand the generalized uniformly valid solution, as given by (98) and (99), 
implies that t,he drag and the lift are not singular a t  the resonant frequency, and in 
fact are O ( d )  as Sw-+0. Their maximum values occur a t  Sw = 0, and are given by 

The dependence of the DC component of the drag coefficient (98) upon w for E = 0.1 
and h = 0.1 has been represented for the purpose of illustration in figure 3. 

9. Extension of results to three-dimensional flows 
The analysis of three-dimensional flows, namely the case of moving and oscillating 

distributions, can be carried out in a similar manner, and only a few results showing the 
principles will be given here. The investigation of the double Fourier transform of the 
linearized solution reveals that among the free waves that travel in various directions 
in the horizontal plane, the amplitude of the transverse waves is the one that becomes 
unbounded for (0 tending to  w, from below. Furthermore, the first-order potential 
E $ ~ ( X ,  y, 0 , t )  is singular like cln (Sw) as Sw+O (Dagan & Miloh 1981). Again, similarly 
to  the two-dimensional case, the third-order terms are the most resonant, and they 
make the perturbation power-series expansion non-uniform for 6w + 0. The solution 
can be rendered uniform by the same procedure as in $7,  namely by deriving a 
generalized first-order solution comprising a phase-shift of the far free waves. The 
final result is that ~ q 5 ~ ~  remains finite for Sw + 0 and behaves like c In E .  By the same 
token the lift and drag acting on an oscillating doublet are shown to be of order c21n c 
for Sw + 0. The application of these results to moving pressure distribution or ship-like 
bodies will be discussed elsewhere. 

10. Summary and conclusions 
The present study has shown that the resonant behaviour of the free waves generated 

by oscillating singularities moving near a free surface can be removed by maintaining 
in the same equation the first-order as well as the most-singular contribution of the 
third-order term. The generalized solution thus obtained is similar to the usual one, 
except that the two resonant poles, roots of the modified dispersion equation, are 
displaced. The physical interpretation of the removal of the resonance is that the 
third-order nonlinear interaction of the free-surface waves causes a shift in the wave- 
number and the group velocity. The group velocity of the resonant free waves tends 
for 6w+O to the translatory velocity of the singularity in the regular first-order 
solution. It is shifted by quantities of order c in the two-dimensional case and similarly 
for the transverse waves in three-dimensional flows. Thus the energy imparted by the 
oscillating body to  the fluid can move away from it, and the amplitude of the free 
waves as well as the forces acting on the body remain finite. These results are illustrated 
by computing the lift and drag forces experienced by a horizontal doublet moving 
parallel and below a free surface. 
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